Gene Regulatory Network modelling: a state-space approach

نویسنده

  • Fang-Xiang Wu
چکیده

This study proposes a state-space model with control portion for inferring Gene Regulatory Networks (GRNs). The proposed model views genes as the observation variables, whose expression values depend on the current internal state variables and control variables, and views the means of clusters of gene expression as the control variables of the internal state equation. Bayesian Information Criterion (BIC) and Probabilistic Principal Component Analysis (PPCA) are used to estimate the internal states from observation data. The proposed approach is applied to two gene expression datasets. Computational results show that inferred GRNs possesses the characteristics of the real-life GRNs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling gene regulatory networks: Classical models, optimal perturbation for identification of network

Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption.  On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications.  This is not an unrealistic goal since genes which are regulated by gene regulatory ...

متن کامل

Investigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach

Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active genes. In this light, the aim of this study was to invest...

متن کامل

Fast Simulation of Probabilistic Boolean Networks (Technical Report)

Probabilistic Boolean networks (PBNs) is an important mathematical framework widely used for modelling and analysing biological systems. PBNs are suited for modelling large biological systems, which more and more often arise in systems biology. However, the large system size poses a significant challenge to the analysis of PBNs, in particular, to the crucial analysis of their steadystate behavi...

متن کامل

Taming Asynchrony for Attractor Detection in Large Boolean Networks (Technical Report)

Boolean networks is a well-established formalism for modelling biological systems. A vital challenge for analysing a Boolean network is to identify all the attractors. This becomes more challenging for large asynchronous Boolean networks, due to the asynchronous updating scheme. Existing methods are prohibited due to the well-known state-space explosion problem in large Boolean networks. In thi...

متن کامل

Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach

Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of data mining and bioinformatics

دوره 2 1  شماره 

صفحات  -

تاریخ انتشار 2008